量子电子学研究所王爱民等发明贝赛尔三光子显微脑成像技术

北京大学信息科学技术学院量子电子学研究所、区域光纤通信网与新型光通信系统国家重点实验室王爱民副教授课题组与分子医学研究所陈良怡教授课题组合作发明了一种基于贝赛尔光束的新型三光子显微镜。此显微镜成功实现针对稀疏标记的样本进行快速深层活体三维脑成像的研究。

像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能“雾里看花”,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。

利用光学成像技术在活体上观察组织和细胞内的动态过程,是研究生物医学问题的关键手段之一。三光子显微镜,对常用绿色及红色荧光蛋白的激发波长与双光子相比更长,且正好处于生物组织的最佳红外通光窗口,具有更好的光学穿透效果;此外,作为更高阶的非线性效应,三光子显微成像相比双光子能明显提高信号背景比。目前,三光子可以在实现组织1.7
mm深度左右的无损高分辨率成像,从而观察小鼠大脑皮层下的海马区的结构和功能。

量子电子学研究所王爱民等发明贝赛尔三光子显微脑成像技术。美国Howard Hughes Medical Institute (霍华德·休斯医学研究所)在Janelia
Farm Research
Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed
aberration measurement for deep tissue imaging in
vivo发表在最新一期的Nature Methods 杂志上。

多光子显微系统一般采用“点扫描”的方式进行成像,本身极大限制了其三维体成像速度。尤其针对三光子来说,激发脉冲的重复频率通常在2
MHz以内,若考虑20 μm厚的样本,其体成像速度被限制在0.7
Hz,无法实时同步观察成百上千个神经元群中的动态信号过程。本工作使用z轴方向拉伸的贝赛尔光进行“光柱扫描”成像,针对稀疏标记生物样本的三光子三维体成像的速度可以提高10倍或更高,从而更清楚地解析大脑神经信号处理中的四维时空过程。

在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为“参考波前”。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以“分解”得到被调制的每一块子区域的“光线”的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。

贝赛尔光方法虽然已于双光子显微成像中得到应用,但其旁瓣效应大大降低成像质量。由于三光子激发为更高阶的非线性效应,旁瓣效应得到有效抑制,贝赛尔光与三光子成像相结合可将两者的优势获得最大的发挥。成像不仅仅比双光子更深,即使是同样深度的情况下也可以得到比双光子贝赛尔显微镜更高分辨率和对比度的荧光图像。研发团队在果蝇、斑马鱼及小鼠大脑上充分证实了利用这一成像技术的优势。

凡本网注明“来源:维库仪器仪表网”
的所有作品,转载请必须注明来源于本网,违者必究。

近日,上述成果以《快速体成像贝赛尔光束三光子显微镜》为题,在线发表于《生物医学光学快报》;并列第一作者为信息学院2014级博士研究生陈冰影和分子医学所2013级博士研究生黄小帅,王爱民和陈良怡为共同通讯作者。

标签: 处理器 荧光显微镜

相关工作得到国家重大科研仪器设备研制专项资助。这也是该项目组继成功研制双光子光片显微镜、2.2
g微型化双光子显微镜、超分辨显微镜之后,在突破活体生物成像深度方面取得的重要研究成果。

小鼠脑海马神经元三光子显微荧光成像,其中:图a,深度为620~680
μm神经元钙荧光活动在贝赛尔光柱模式下可被同时记录;图b,相应体积内神经元活动的高斯光成像

相关文章